Ц	11 Ti	cket Number:	
	111 11	Code No.: 22303	S
		VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year (E.C.E.) II-Semester (Supplementary) Examinations, December-2016	
		Networks and Transmission Lines Time: 3 hours Note: Answer ALL questions in Part-A and any FIVE from Part-B	
		Part-A ($10 \times 2 = 20 \text{ Marks}$)	
	1.	Distinguish between Symmetrical and Asymmetrical networks.	
	2.	Define image impedance and iterative impedance.	
	3. 4. 5.	Design a constant k-type LPF for cut off frequency of 1 KHz with nominal impedance 600Ω . Draw a general block diagram for Composite filter. Design a symmetrical T- attenuator for Ro = 600 Ohms and attenuation of 20 dB.	
	6.	Test whether the given polynomial $S^4 + 5S^3 + 8S^2 + 9S + 6$, is Hurwitz or not.	
	7. 8.	Define the primary constants of a transmission line. Determine the VSWR of a transmission line when load is short circuit and under matched condition.	
	9. 10.	What are the differences between single and double stub matching? How is VSWR related to Reflection Co-efficient?	
		$Part-B (5 \times 10 = 50 Marks)$	
	11.	a) Derive expressions for image and iterative impedances of a symmetrical T-network.	[5]
		b) An impedance matching network is to operate between resistances 100Ω and 500Ω . having a image phase constant of 63.4° . Compute the insertion loss and insertion ratio of the network.	[5]
	12.	a) Find the circuit elements of a prototype high pass T-section filter having cut-off frequency of 1,000 Hz to work into a 600 Ohms load resistance.	[6]
		b) What are the limitations of constant K filters? How to overcome by using m - derived sections?	[4]
	13.	a) Design an asymmetrical L-attenuator to work into design impedance of 400 Ω and 300 Ω .	[5]
		b) Derive an expression for input impedance of a line of finite length.	[5]
	14.	a) Derive the condition for a distortion less transmission line and explain how loading of cables helps to achieve this condition.	[6]
		b) Impedance measurements made on a $\frac{1}{4}$ Km length of a cable at 1.6 KHz under open and short circuit conditions have $Zoc = 2460 \bot -86.5^{\circ}$, $Zsc = 21.5 \bot 11^{\circ}$. Calculate Zo , α (alternation constant) and β (Phase constant).	[4]
	15.	a) A lossless transmission line whose characteristic impedance is 50Ω and which is terminated by the load $100 + j150 \Omega$. Determine length of the short circuit stub to match the load using Smith chart.	[6]
		b) Write applications of Smith Chart.	[4]
	16.	a) Derive the expression for the characteristic impedance and propagation constant for asymmetrical π -network.	[6]
		b) List out the merits and demerits of m-derived filters.	[4]

[5] [5] [5]

17. Write short notes on any two of the following: